If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+80x+12=0
a = -5; b = 80; c = +12;
Δ = b2-4ac
Δ = 802-4·(-5)·12
Δ = 6640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6640}=\sqrt{16*415}=\sqrt{16}*\sqrt{415}=4\sqrt{415}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-4\sqrt{415}}{2*-5}=\frac{-80-4\sqrt{415}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+4\sqrt{415}}{2*-5}=\frac{-80+4\sqrt{415}}{-10} $
| 19.1+30.5=x | | h-1.01=9.99 | | 2x+8+.5x-x=11 | | 11x/6+1/2=2x | | 8(3x-5)=88 | | x/3.25=7 | | 5x+3x-2+x-12=40 | | 9-6c=-54 | | 2(x+9)=4x–6 | | -8y+5(y+3)=-15 | | 2(x+9)=4x–6 | | 2y=5.3 | | 8=m/17+3 | | -3h-2h+6h+9=h+9 | | d×=35 | | 13-3=4y-4y | | 15^x=350 | | 3m+8=-2 | | 19=4h-5 | | x+5=3-1 | | p/4=3.25 | | 60=3(-3+x) | | x-18=50 | | 6=3(c-15) | | 225=15h | | -91=x/8-96 | | 2-2x-4=6 | | 3=1/3(-6)+b | | 2x+15=7x-18=2x-3 | | -4x=164 | | x+8+5x+4=32 | | 3x-28+90+66-x=180* |